视频、音频、气味、生物特征等技术的发展和成熟,全面掌控防控场景和目标的完整信息成为可能,在安防应用中越来越多的部署更多类别的感知设备,用于从更多维度采集目标信息,包括目标的各种要素、活动轨 迹以及关联信息等,从而形成一个动态感知体系,实现防控工作的“无所不在、无所不知”目标。
针对某一特定的应用场景,相关前端感知设备实现全互联直通,逻辑上各感知设备一体化,当一个设备的感知到一条单维度信息后,通知其他设备从其他维度提取信息,对信息的准确性进行印证,从而实现群防群治,实现在前端就能完成一次感知信息的数据清洗,从而保证了感知信息的准确性。
只有验证有效的信息才会 上报至后端系统和平台,在后端再进行数据综合应用,最终实现感知的多层运用。
一方面,可以提升准确度,减少误报;另一方面,通过本场归并,减少数据量,降低后端处理的压力。
当前,安防在感知运用上是一个个孤立的垂直结构,需要先由前端感知设备进行目标感知和信息采集,然后原始信息报送到后端业务系统进行结构化和业务语义化,最后业务数据汇总到中心数据综合应用平台(含大数据)进行数据治理和关联应用。
在感知运用信息链中前端设备和后端业务系统是垂直对应关系,只有到了中心数据综合应用平台才形成水平关系,才能面向多个业务系统进行多维数据综合和关联。
所以,我们在AIoT时代经常看到企业推出的“中枢大脑”。以紫光华智中枢大脑为例来看,一个城市的战“疫”,全面、精准、快速、预测是城市治理与风险防控建设目标,紫光华智“四引擎”各就各位并各司其职。
全面采集数据——构建城市立体管控圈。要驾驭数据,端侧的采集是第一步,也是关键一步。所以传统安防企业善于在采集端发力,这也是他们雄踞市场的制胜法则。
精准感知信息——多维特征融合定位疑似患者。为满足实战所需,感知的信息就需精准,而不是采集之后的眉毛胡子一把抓,同时,口罩遮住了行人的绝大部分特征,非约束场景下的摄像机无法精准定位到行人的感染路径。
快速认知知识——强化管控能力。知识是从信息中经过归纳、碰撞、流转、沉淀提炼而得到的有用资料,基于推理和分析,还可产生新的知识,体现了信息的本质和经验。快速认知知识,就是集中资源用最快的速度分析,快速把信息提取完成,让目标查找更便捷。
智慧预测预知——区域风险转化。当下用户对AI的期待之一就是能预测与预知,既能洞察当下,也能预知未来。复工开始后,海外的疫情爆发,哪些区域的疫情风险加大,如何防输入、防扩散、防聚集,及时发现风险因子是考题。
访谈
更多做行业赋能者 HID迎接数字化浪潮新机遇 破解新挑战
今年3月份,全球可信身份解决方案提供商HID发布了最新的《安防行业现状报告》(以下简称“报告”),该报告…
数字化浪潮下,安防厂商如何满足行业客户的定制化需求?
回顾近两年,受疫情因素影响,包括安防在内的诸多行业领域都遭受了来自市场 “不确定性”因素的冲击,市场…
博思高邓绍昌:乘产品创新及客户服务之舟,在市场变革中逆风飞扬
11月24日,由慧聪物联网、慧聪安防网、慧聪电子网主办的2022(第十九届)中国物联网产业大会暨品牌盛会,在深…