ChatGPT大火带动AI又一波热潮,不过业界普遍认为,当AI步入大模型时代,只有大企业和超级富有的企业才玩得起AI,因为AI大模型的打造非常昂贵。
首先是计算昂贵。多伦多大学市场营销教授AviGoldfarb说:“如果你想创办一家企业,自己开发大语言模型,自己计算,成本太高了。OpenAI是很贵的,要数以十亿计的美元。”租赁计算当然会便宜不少,但企业仍然要向AWS等企业支付昂贵费用。
其次是数据昂贵。训练模型需要海量数据,有时数据是现成的,有时不是。CommonCrawl和LAION等数据可以免费使用,对于此类数据,成本主要来自数据清理和处理,成本变化很大,可能是几百美元,也可能是几百万美元。
Glean公司创始工程师DebarghyaDas说,在美国,根据大语言模型论文做一些粗略的数学计算,如果用的是FacebookLLaMA,训练成本(不考虑迭代或者出错)大约是400万美元,如果是谷歌PaLM,大约2700万美元。
即使用的是免费数据,成本也不低。HuggingFace公司研究人员SashaLuccioni说:“当你下载容量达到TB的数据,如果想过滤或者以某种特殊方式利用数据,比如用文本-图片模型处理(研究人会专注于某些数据子集,这样模型才会变得更好),整个过程相当棘手。”需要强大的计算力,需要大量专业人士。
再次,专业人才的聘请费用也很高。DebarghyaDas在做上述估算成本时没有考虑人力成本。SashaLuccioni指出:“机器学习专业人士的薪酬很高,因为要与谷歌及其它科技巨头争夺人才,有时一位专业人才可能要几百万美元。”2016年OpenAI最顶级的研究人员薪酬约为190万美元。
并且,训练模型、聘请专业人士的成本不是一次性的,是持续的。例如,如果开发的是客服聊天机器人,每周或者每几周就要优化。模型还要经受压力测试,确保它生成的答案不出错。正如SashaLuccioni所解释:“最贵的成本来自持续性工作,必须持续测试模型,必须确保AI所做的和预期一样。”
最后,持续运转费用也不低。当一切准备妥当,模型向公众开放,每天要接受成千上万次询问,此时要确保模型可扩展、高度稳定,维护成本也很高,且需要专业人士来处理。
访谈
更多做行业赋能者 HID迎接数字化浪潮新机遇 破解新挑战
今年3月份,全球可信身份解决方案提供商HID发布了最新的《安防行业现状报告》(以下简称“报告”),该报告…
数字化浪潮下,安防厂商如何满足行业客户的定制化需求?
回顾近两年,受疫情因素影响,包括安防在内的诸多行业领域都遭受了来自市场 “不确定性”因素的冲击,市场…
博思高邓绍昌:乘产品创新及客户服务之舟,在市场变革中逆风飞扬
11月24日,由慧聪物联网、慧聪安防网、慧聪电子网主办的2022(第十九届)中国物联网产业大会暨品牌盛会,在深…